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Abstract

We analyze an extension of the many-to-one placement problem, where some doctors are exoge-

nously guaranteed a seat at a program, which defines a lower bound on their assignment. Respecting

assignment guarantees, combined with the limited capacities of programs often violates fairness and

leaves more preferred doctors unemployed. In pursuance of restoring fairness, a designer often has

to deviate from the target capacities of programs, and imposing the traditional notion of fairness

results in excessive deviations from the target capacities. In order to prevent excessive deviations,

we introduce two notions that are tailored to the environment: q-fairness and avoiding unnecessary

slots. Furthermore, we introduce the Assignment-Guarantees-Adjusted Mechanism (AGAM) and

show that it is the unique strategy-proof mechanism that satisfies q-fairness and avoids unnecessary

slots whilst respecting assignment guarantees. Furthermore, among the mechanisms that satisfy

q-fairness and respect guarantees, AGAM minimizes the deviation from the target capacities.
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1 Introduction

In most of the standard matching theory and its applications, the analysis often includes

the preferences of both sides as the main component. In a residency matching environment,

this component would consist of doctors’ preferences over residency programs and programs’

preferences over sets of doctors. In addition to baseline preferences as such, many real-life

matching applications include ex-ante entitlements. The entitlements constitute assignment

guarantees and define a lower bound on placements. In the case of overbooking by airline

companies, all ticket owners are entitled to fly to their destination. Only occasionally is the

demand to check-in higher than the capacity of the plane. Companies then compensate the

ineligible passengers with highly attractive offers so that they voluntarily back down from

their claim on the flight.

Nevertheless, in many other situations, such monetary transfers are not possible. Yet,

it might be feasible to relax the capacities to some extent. In many countries where civil ser-

vants are appointed to locations, governments are responsible for protecting family integrity

and can assign spouses to workplaces that are only up to a certain distance level from each

other. Similarly, whenever there are second-round placements for empty seats in schools or

colleges, the assignment in the first round defines a lower bound for candidates who partici-

pate in the second round. In both examples, candidates are exogenously guaranteed to have

certain seats. The placement procedure can only send them to places they like better than

their assignment guarantee, or else they will have to be assigned to their entitlement.

In this paper, we take an axiomatic approach to many-to-one matching environments

with assignment guarantees and semi-flexible capacities. Adapting the jargon of the res-

ident matching problem, doctors have preferences over residency programs and programs

have preferences over doctors. Furthermore, some doctors have assignment guarantees. A

mechanism respects assignment guarantees if it assigns doctors to programs that they like

at least as much as their assignment guarantee.

We instantly observe that the hybrid placement problem with assignment guarantees

reveals a many-to-one matching trilemma: assignment guarantees and fixed capacities are

generically not compatible with fairness. This is because whenever the less preferred can-

didates have guarantees, the mechanism can not assign seats to more preferred candidates,

hence is not “fair” to them. If a designer wants to respect the exogenously determined

assignment guarantees as well as remain fair to doctors, she has to relax the capacity con-

straints of residency programs. Therefore, with such assignment guarantees, we often observe

deviations from the initially determined capacities.
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However, the capacities of residency programs are exogenously given in placement prob-

lems, and they reflect limited resources. Therefore, simply relaxing them as much as needed

would probably be undesirable for the designer. With the aim of finding a balance be-

tween fairness and capacity concerns, we present two novel axioms, which are tailored for

environments with assignment guarantees and semi-flexible capacities.

One of the axioms defines the eligible doctors for a seat in a program. This axiom is

called avoiding unnecessary slots (shortly AUS) and ensures that a doctor can only earn a

seat through her assignment guarantee or merit ranking for a program. By AUS, if a doctor

is assigned a seat at a program despite having no guarantee, we can conclude that she is

ranked within the target capacity among the doctors who are placed there. Similarly, if a

doctor is not ranked within the target capacity of a program, the placement must be due to

her placement guarantee.

As mentioned above, deviations from the target capacities are inevitable if the designer

aims to be fair to more preferred candidates. However, only slightly relaxing the capacities

might not be sufficient to ensure fairness. On the contrary, the fairness of any mechanism

is endangered unless the capacity limits of programs are abolished completely. When the

worst doctors have assignment guarantees, imposing the traditional fairness notion requires

creating additional capacities, even for some doctors, who would not have received a seat if

it were not for the assignment guarantees.

Observing that the traditional notion of fairness is too strict for environments with

guarantees and requires major deviations from the target capacities, the other axiom we

introduce is a relaxed notion of fairness, which we name as capacity respecting fairness

(shortly q-fairness). Given an assignment, if a doctor does not receive a seat at a program

that she likes better, she envies the candidates who are placed there. With the traditional

notion of fairness, her envy is justified as soon as there’s a candidate in that program that is

less preferred than her. With q-fairness, on the other hand, there is another requirement to

justify the envy: Among the doctor pool of the program, the doctor has to be ranked within

the target capacity. In the absence of guarantees, q-fairness is equivalent to the traditional

notion of fairness.

Crucially, q-fairness and AUS have different implications, such that q-fairness puts con-

straints on doctors who do not get into programs, whereas AUS constrains those who do

get in. For instance, assigning every doctor to their favorite program would trivially satisfy

q-fairness but fail AUS, thus heavily damaging the capacities. On the other hand, assigning

everybody to their guaranteed seat would raise fairness concerns. Thus, whilst respecting

the guarantees, a suitable mechanism needs to find the balance between capacity constraints
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and fairness.

After introducing the axioms, we present the Assignment-Guarantees-Adjusted Mech-

anism (AGAM), which is the deferred acceptance algorithm induced by the Assignment-

Guarantees-Adjusted choice function. This special choice function is tailored for the student

placement environments with assignment guarantees, aiming to create as least excessive ca-

pacities as possible. At each step of the algorithm, programs first admit the best candidates

in their application pool as many as their target capacity. If there are remaining doctors

in the pool that have assignment guarantees at that program, they are admitted addition-

ally. We show that AGAM admits many favorable features. First, it satisfies q-fairness and

AUS, respects the assignment guarantees, and is non-wasteful. Second, it produces a stable

matching and is strategy-proof on the doctor side. In fact, it is the unique strategy-proof

mechanism that is q-fair, avoids unnecessary slots, and respects assignment guarantees. Fur-

thermore, among the mechanisms that are q-fair and respect the assignment guarantees, it

minimizes the deviations from the target capacities with its AUS property.

The environment described in this paper has many applications. For instance, most

firms consist of different types of professionals who have different skills. The firms frequently

analyze their status and restructure the firm if needed. From time to time, efficient re-

structuring might involve replacing existing workers with new ones who have different skills.

However, it is often too costly for the firm to lay off existing workers due to regulations.

If hiring the new worker is essential for the firm, it might deviate from the target capacity

and hire the new worker anyway, even though the firm did not intend to expand in the first

place.

Similarly, in the European Union, any worker is entitled to the same job and wage when

they go back to work after their parental leave. If the firm has employed someone else during

the new parent’s absence, they either must relocate the new parent to another position that

the parent prefers to the older one, or let both workers work for the same position. Similarly,

when civil servants apply for a change of location, they only agree to the locations they like

more than their current place of duty.

In order to have a better understanding of all such environments with entitlements,

this paper provides the suitable axioms that would match the policymaker’s expectations.

Moreover, it presents a plausible way to relax the capacities if it is allowed.

This paper is organized as follows: In Section 2, we present our model. In Section 3

we show the preliminary shortcomings of the existing notions and define the axioms that

are tailored for the specific environment. We present the Assignment-Guarantees-Adjusted
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Mechanism and discuss its properties in section 4. In Section 5, we present three real-life

applications to this paper. We conclude in Section 6.

1.1 Related Literature

The paper connects to both many-to-one matching and many-to-one matching with contracts

literature. On the one hand, programs have capacities and preferences over doctors, which

reflects the key elements of a many-to-one environment such as in the seminal papers by

Roth (1984), Balinski and Sönmez (1999), Abdulkadiroğlu and Sönmez (2003). As in those

papers, the only strategic agents are the doctors, and the mechanism chosen by the designer,

as well as the residential programs’ preferences are commonly observed. In addition to

these basic components, the existence of assignment guarantees complexifies the many-to-

one environment towards a many-to-one matching with contracts framework described by

Hatfield and Milgrom (2005), Hatfield and Kojima (2008) Westkamp (2013), and many

others.

Intuitively, the placement guarantees reflect yet another form of affirmative action pol-

icy. Similar to the existing literature, some candidates are exogenously prioritized at some

programs, such as in Abdulkadiroğlu and Sönmez (2003), Kojima (2012), Hafalir, Yenmez,

and Yildirim (2013), and Doğan (2016). Similar to them, there might be various underlying

reasons for such a claim at a seat, for example, the location of the spouse or acquired rights.

However, because a doctor cannot be assigned to a least preferred alternative than their

guarantee, the assignment guarantees are more strict compared to the priorities in those

papers. A similar lower bound constraint can be found in Combe et al. (2022). In their

setting, the existing teachers of schools cannot be sent anywhere that they like less than

their current assignment.

Similar to Westkamp (2013), Kominers and Sönmez (2016), Aygün and Sönmez (2013),

the mechanism we propose is essentially a Gale-Shapley deferred acceptance algorithm Gale

and L. S. Shapley (1962) along with a choice rule to be implemented at each step. Further-

more, the mechanism involves a dynamic flavor as in Aygün and Turhan (2020) in the sense

that the balance between the guarantee seats and regular seats evolves as the mechanism

moves forward. Different than those papers, doctors do not have a preference about the type

of seat they acquire. Therefore, even if they were asked to reveal their guarantees to the

mechanism, no candidate would have incentives to hide their guarantee status strategically.

The environment resembles the benchmark housing market as individuals’ guarantees

define a lower bound for them in a Pareto sense, candidates with guarantees can only be bet-
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ter off L. Shapley and Scarf (1974). However, the complex preferences of programs prevent

us from implementing Gale’s TTC. Furthermore, our mechanism creates additional seats.

In that sense, the problem also resembles the House Allocation with Existing Tenants in

Abdulkadiroğlu and Sönmez (1999), with a substantial twist that creating new rooms is

also possible. Nevertheless, the additional rooms, if created, can only be used by the candi-

dates with a guarantee at the specific program. Increasing efficiency further by exchanging

guarantees is restricted due to stability concerns.

To the best of our knowledge, this paper is the first to study how to relax capacities

when the need arises, while respecting the exogenous lower bounds on the assignments as

well as upholding some sort of fairness. Pursuing an axiomatic approach to characterize a

suitable mechanism for such environments, we translate the semi-flexible capacities into the

choice functions of programs, and the realized capacities then depend on the application

pool. Similar to Westkamp (2013), Sönmez and Switzer (2013), and Dimakopoulos and

Heller (2019), our analysis has a direct application in a current market that concerns tens

of thousands of people every year.

2 Model

Same as in other many-to-one matching environments, we have a finite set of doctors and

a finite set of residency programs denoted by D = {d1, d2, ..., dn} and H = {h1, h2, ..., hm},

respectively. The generic doctor d has strict preferences, Pd (occasionally ≻d for convenience)

over programsH along with an outside option ∅, where PD′ is the collection of the preferences

of doctors in set D′ ⊂ D.

Similarly, the generic residency program is denoted by h and has an exogenously de-

termined capacity qh, where the collection of the capacities of all programs is denoted by

qH = {qh1 , ..., qhm
}.

While considering a student placement problem with assignment guarantees, a conve-

nient approach is adapted from the matching with contracts framework: We define choice

functions for both sides of the matching platform. From any set of residency programs

H ′ ⊂ H, d chooses according to the choice function that is driven from her strict preference

Pd over H ∪ {∅}, Cd : 2H → H ∪ {∅}, such that Cd(H
′) = maxPd

(H ′ ∪ {∅}). This implies

that the doctors have unit demand. When Cd(H
′) = ∅, doctor d prefers the outside option

among the choices, i.e. to remain unemployed.

Analogously, Ch is the choice function of program h. Similar to Cd, Ch allows the
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programs to choose no doctor from any application pool. However, Ch is different than

Cd in two aspects: First, programs choose sets of doctors from application pools, thus

Ch : 2D → 2D, and for any D′ ⊂ D, Ch(D
′) ⊂ D′. Second, Ch does not need to be driven

from a preference relation. In fact, any choice process will involve two components:

First, each program h has an exogenously given strict preference over individual doctors

that is denoted by Ph (≻h, and the collection of preferences PH).
1 For notational conve-

nience, we occasionally use the rankings of doctors in an application pool D′ instead of the

preferences. Reasonably, for program h, the ranking of doctor d in any application pool D′

is defined as a function zh(d|Ph, D
′) : D′ → N+ and zh(d) decreasing with Ph, such that the

more preferred d is for h, the higher ranking she has in an application pool2. Without assign-

ment guarantees, the components described so far constitute a student placement problem:

(D,H, PD, PH , qH).

Nevertheless, the contribution of this paper is to implement assignment guarantees into

such a many-to-one placement problem, which is the second component of a program’s

choice process. Doctors can have assignment guarantees at different programs. In line with

this purpose, let Eh denote the set of doctors, who are guaranteed a seat at program h.

With a similar notation logic as above, EH is the collection of doctors that have assignment

guarantees at each program. The student placement problem with assignment guarantees

therefore consists of the tuple: (D,H, PD, PH , qH , EH).

Once doctors and programs are assigned to each other, a matching µ is a set of doctor-

program (d, h) pairs such that each doctor d appears in at most one pair and µ(d) = h if

and only if d ∈ µ(h), where µ(d) and µ(h) denote the match of the doctor d and program h

under matching µ, respectively.

A direct mechanism is then a function ϕ and selects a matching for each preference

profile, capacity vector and guarantee scheme of the doctors. In this paper, we denote the

matching, which is the outcome of the direct mechanism ϕ as µφ.

3 Placement Problem with Assignment Guarantees

In this section, we formally define the concepts that are specific to our environment. More-

over, we discuss the peculiarities and challenges of the student placement problem with

1The existence of a centralized exam score is a special case of this framework such that the programs
have the same preference over doctors.

2Formally, zh(d|Ph, D
′) = |d′ ∈ D′ : d′ ≻h d|+ 1
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assignment guarantees that arise due to the characteristics of the problem.

3.1 Placement Problem with Assignment Guarantees when Ca-

pacities are Fixed

This subsection studies the incompatibility between assignment guarantees and fixed capaci-

ties in the placement problem. Namely, we show and discuss that it is not possible to respect

assignment guarantees and satisfy fairness while keeping the capacities of the programs con-

stant. Assignment guarantees of doctors put constraints on the outcome, such that a doctor

may never be assigned to a program that she prefers less than the program at which she has

an assignment guarantee. Formally:

Definition 1. Mechanism ϕ respects assignment guarantees if for any fixed problem

(D,H, PD, PH , qH , EH), ∄d ∈ D such that d ∈ Eh for some h and h ≻d µ
φ(d).3

Next, we introduce the fairness criterion, which is adapted from the student place-

ment literature. Fairness requires that the more preferred doctors are assigned to better

alternatives. Formally:

Definition 2. Mechanism ϕ satisfies fairness if for any fixed problem (D,H, PD, PH , qH , EH),

∄{d, d′, h} such that d ≻h d′ and h ≻d µ
φ(d) whereas d′ ∈ µφ(h).

The outcome of a mechanism is not fair, if there is an unmatched doctor-program pair

(d, h), where doctor d prefers program h to her own assignment and the program h prefers

her to another doctor d′ who is assigned a seat there. Observe that both criteria are quite

intuitive. The difference between the two is that fairness considers the preferences of both

sides only. However, programs should take into account the assignment guarantees of doctors

as well. Therefore, assignment guarantees might diversify programs’ “preferences”.

Example 1. Let us now consider the following simple example: There are two doctors,

D = {a, b} and one single program H = {h} with a single capacity qh = 1. Suppose a

is guaranteed a seat at hospital h, meaning that if a mechanism is to respect assignment

guarantees, she cannot be assigned to a worse alternative than h. Doctor b has no assignment

guarantee, therefore Eh = {a}. If a ≻h b, it is quite easy for any mechanism ϕ to satisfy

fairness as well as respect the guarantees, that is to match a with h and leave b unemployed.

3Observe that this definition does not prevent a doctor from having assignment guarantees at multiple
programs. If a doctor is guaranteed a seat at multiple programs, we can WLOG restrict attention to her
most preferred alternative amongst her assignment guarantees.

8



However, it is not as simple once b ≻h a. In that case, fairness requires µφ(b) = h and

assignment guarantees require µφ(a) = h. Thereupon, it is not possible to satisfy both

without creating an additional capacity at program h.

Admitting the impossibility to respect assignment guarantees and satisfy fairness with-

out creating additional capacities, deviation from the “target” capacities qH is still undesired.

The unintended acceptance of additional doctors results in inefficiency in many ways. First

of all, it is harmful to the government budget to employ two doctors instead of one. Second,

from program h’s point of view, if the program was optimally designed for one resident only,

then the additional resident may reduce the overall quality of the education.

Additionally, recall the Rural Hospitals Theorem by Roth (1986). A quite intuitive

fact that names the theorem is that the young residential candidates usually prefer the

programs in the urban areas rather than the rural ones. Thus, this unintended creation of

additional capacities is likely to disturb the balance between hospitals in terms of the number

of residents employed.

On the one hand, it is clear that additional capacities have to be created if the designer

aims to implement a fair mechanism. However, how many additional capacities will be

required still remains an unanswered question. We illustrate this extent with the following

example:

Example 2. Suppose there are three doctors, D = {a, b, c} and one single program H = {h}

with a single capacity qh = 1. Same as the previous example, only a is guaranteed a seat at

hospital h. Furthermore, h ranks the candidates as b ≻ c ≻ a.

Any mechanism that respects assignment guarantees has to satisfy µφ(a) = h.

Furthermore, once a is assigned to program h, fairness would require all three doctors

to be assigned to h since b and c both are preferred over a. However, in the absence of

assignment guarantees, c would not receive a seat in a fair mechanism. In other words, a’s

assignment guarantee at program h creates another assignment guarantee for c indirectly.

We could take this scenario to an even more extreme point: What if there are many

doctors as c, whose ranking satisfy b ≻ c ≻ ... ≻ z ≻ a? Would all the candidates receive

a seat at h only because of a’s assignment guarantee? In fact, the first proposition of the

paper gives answers this question and shows the extent of demandingness of fairness in

environments with placement guarantees:

Proposition 1. There does not exist a mechanism that satisfies fairness and respects as-

signment guarantees without creating capacities equal to the number of candidates for each
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program.

If the designer wants to ensure fairness for all candidates, she has to abolish the capac-

ities of all programs. The discussion above is only strengthened for no capacity regulations,

and therefore is undesirable. Admitting that imposing the traditional fairness axiom is too

strict in such environments, we propose an alternative, relaxed notion of fairness in the next

section, which is more suitable to the placement environments with assignment guarantees.

3.2 Capacity Respecting Fairness (q-fairness)

The main reason for proposing a new notion of fairness is to avoid creating additional ca-

pacities for those, who would not acquire a seat in the absence of assignment guarantees of

other candidates. The traditional notion of fairness is too strict in the sense that additional

capacities are created unintendedly even to doctors such as c, who are ranked outside the

target capacity and do not have assignment guarantees at programs. In other words, if it

were not for the guarantees, doctors such as c would not have a claim on the seats based on

fairness, because they are ranked outside the capacity of program h. For this very reason,

we present capacity respecting fairness, which is a relaxed version of the traditional fairness

axiom:

Definition 3. Mechanism ϕ satisfies capacity respecting fairness (or is q-fair) if for

any fixed problem (D,H, PD, PH , qH , EH),

∄(d, h) such that h ≻d µ
φ(d) & z(d|Ph, µ

φ(h) ∪ {d}) ≤ qh.

Intuitively, q-fairness suggests that a mechanism ϕ is capacity respectingly fair to doc-

tors, as long as it doesn’t assign a doctor d to a worse alternative µφ(d), who would be ranked

within the target capacity of a program h along with the to-h-matched doctors µφ(h). Ob-

serve that q-fairness is clearly a weaker condition than fairness. Specifically, q-fairness allows

violation of fairness for those, who are ranked outside the target capacity for an application

pool (such as doctor c in Example 2 above, but not doctor b). Furthermore, in an environ-

ment where agents can earn seats by no means but simple preferences on the program side

(such as their exam scores), q-fairness is the same as the traditional fairness axiom.

The problem of having to create additional capacities is still not beside the mark with

q-fairness. There still does not exist a mechanism that satisfies q-fairness and respects

assignment guarantees, without creating additional capacities for some program. This could

again be observed in Example 2 with doctors a, b, and c. As a has a right at the only seat
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of h, b also has the right due to q-fairness. However, q-fairness now allows us to leave c

out of the program. In that sense, q-fairness is a minimal “fairness” requirement on the

way to decrease the number of additional capacities. It is the least we could expect from a

mechanism that has some fairness concerns when assignment guarantees are present.

If a mechanism is q-fair, a side benefit is that no seat of a program is left empty as

long as there is some doctor who prefers the seat to her current alternative. This notion is

formally called non-wastefulness, which indeed means that no seat is wasted throughout the

procedure. 4

3.3 Avoiding Unnecessary Slots

Capacity respecting fairness is still not enough to prevent the creation of unnecessary capac-

ities to the full extent. To see this, consider the following example:

Example 3. Suppose there are four doctors, D = {a, b, c, d} and two programs H = {x, y}

such that qx = qy = 1. The program’s preferences both satisfy a ≻ b ≻ c ≻ d and the least

preferred candidates have assignment guarantees, Ex = {c} and Ey = {d}. Suppose x is

preferred over y by all doctors but c (c prefers y to x). If mechanism ϕ places candidates

such that µφ(x) = {a, d}, µφ(y) = {b, c}, q-fairness is still not violated. However, it is neither

clear nor natural that c and d receive an additional seat at a program at which they have

no assignment guarantee.

Capacity respecting fairness constraints the envy on the side of those who did not get

into the residential programs. However, as can be seen above, another notion is needed as

well, which restricts the ones who actually receive a slot. Only that way we can make sure

that the excess capacities are only created for those, who have assignment guarantees at

programs. For this reason, we introduce the following notion:

Definition 4. Mechanism ϕ avoids unnecessary slots (or satisfies AUS) if for any fixed

problem (D,H, PD, PH , qH , EH) and any pair (d, h),

µφ(d) = h and d /∈ Eh ⇒ z(d|Ph, µ
φ(h)) ≤ qh

Verbally, a mechanism avoids unnecessary slots if a doctor is placed at a program only

because of her assignment guarantee or if she is ranked within the target capacity among

the assigned set of doctors to the program.

4The formal definition, as well as the proof for q-fairness implying non-wastefulness can be found in the
appendix.
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The two notions of q-fairness and AUS are introduced to find a balance between the

preferences of doctors, preferences of programs, and assignment guarantees. Even though

they might sound similar, their implications are quite different. For example, assigning every

doctor to their favorite program would satisfy assignment guarantees and q-fairness trivially

(because there is no envy at all) but would possibly create many unnecessary slots, failing

AUS. On the other hand, allocating seats only to doctors with assignment guarantees would

not create unnecessary seats but raise fairness concerns.

When there are assignment guarantees in addition to program preferences, the require-

ments we expect from a mechanism have to be relaxed relative to the benchmark student

placement problem. For the two new notions of q-fairness and avoiding unnecessary slots,

we can say that q-fairness takes into account of preferences of doctors in a relaxed way that

is compatible with assignment guarantees, whereas AUS considers the preferences of pro-

grams in the same relaxed way. In the absence of assignment guarantees, Student Proposing

Deferred Acceptance Algorithm is naturally q-fair (also fair) and avoids unnecessary slots.

4 The Assignment-Guarantees-Adjusted Mechanism

Having presented the appropriate notions, we now define a new choice function, with the

intent of building towards a mechanism that creates excess additional capacities to the least,

while respecting assignment guarantees. Because of the rather complex nature of the student

placement problem with assignment guarantees, the choice function will resemble the choice

functions in matching with contracts framework, especially the choice functions in the Cadet-

Branch Matching problem by Sönmez and Switzer (2013). The Assignment-Guarantees-

Adjusted Choice Function (shortly AGA Choice Function, denoted by CA
h ) defines a selection

rule of program h from any application pool D′ ⊂ D and proceeds as follows:

1. Rank all the doctors in D′ according to preferences of h.

2. Based on their rankings, add doctors one-by-one to CA
h (D

′) until qh is full or all doctors

are considered.

3. Add all the remaining doctors such that d ∈ (Eh ∩D′) to CA
h (D

′).

4. Terminate the procedure, reject all other doctors.

For any given application pool, the choice function first considers its own preferences

and adds doctors one-by-one according to their ranking. In this step, there may or may

not be doctors who have assignment guarantees among the chosen doctors. After the target
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capacity is full with the merit candidates, the program does not immediately reject all

the remaining candidates. Instead, if there are doctors left in the application pool with

assignment guarantee, it adds them to the chosen set and expands its capacity.

Almost trivially, one can show that the choice function satisfies certain well-behaving

properties that a mechanism designer would expect from a choice function such as substitutes,

law of aggregate demand (LAD), and irrelevance of rejected contracts (IRC), proofs of which

can be found in the Appendix B. Intuitively, the substitutes condition ensures that there are

no complementarities between the doctors for the programs. LAD guarantees the expansion

of the rejection set as the choice set expands and with IRC, removing the rejected alternatives

does not affect the choice set.

After the introduction of AGA Choice Function, we now shift our attention to mecha-

nism design. The mechanism we introduce in order to minimize the number of additional

seats is the doctor proposing deferred acceptance algorithm induced by the AGA Choice

Function. Formally:

Step 1 : Each doctor proposes to her first choice. Each program tentatively assigns its

seats to the doctors in its application pool according to the AGA Choice Function.

...

Step k : Each doctor who was rejected by any program in the previous step proposes

to her next choice. Each program considers the doctors it has been holding so far, together

with the new applicants and tentatively assigns its seats to the doctors in its new application

pool according to the AGA Choice Function.

Because this mechanism uses the AGA Choice Function in every step of the deferred ac-

ceptance algorithm, we call this special mechanism “Assignment-Guarantees-Adjusted Mech-

anism”, shortly AGAM.

In an environment where doctors have assignment guarantees at some programs in

addition to the programs’ preferences, creating additional capacities is inevitable. However,

the adjusted choice function helps implement assignment guarantees into the benchmark

placement problem such that assignment guarantees are respected and the deviation from

the target capacities is only due to the guarantees.

It is almost trivial that for any application pool of any program, the choice function itself

exhibits the plausible features of the environment with assignment guarantees. If there is a

single program, the choice function admits candidates in a single step such that it is q-fair,
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avoids unnecessary slots, and respects assignment guarantees by construction.5 Furthermore,

the candidates then would not have any incentive to misreport their preferences. However,

when it comes to the mechanism which includes more than one program and takes several

steps to conclude, it is not that straightforward that the plausible properties are still satisfied.

In the following section, we rigorously discuss the properties of AGAM. All omitted proofs

can be found in Appendix C.

4.1 Fairness, q-fairness, AUS, and Assignment Guarantees

At this point, it is already clear that AGAM violates traditional fairness6. It was the first

acknowledgment of the paper that fairness is too strict in placement environments with

assignment guarantees. On the other hand, the mechanism satisfies other properties that

were defined in the previous chapters.

Proposition 2. AGAM satisfies capacity respecting fairness, avoids unnecessary slots, and

respects assignment guarantees.

The fact that AGAM satisfies q-fairness, AUS, and respects assignment guarantees

proves that the mechanism is a suitable candidate for a placement environment with assign-

ment guarantees. The mechanism acknowledges the merit rankings of doctors and respects

the exogenously given assignment guarantees. When some fairness concerns are present,

recall that any mechanism has to deviate from the target capacities but AGAM does that

in a minimally harmful way. This is because AGAM makes sure that the extra capacities

belong to exogenously guaranteed candidates at each program. Furthermore, as mentioned

before, it is non-wasteful which is implied by q-fairness.

4.2 Strategy-Proofness

While designing a mechanism for a placement problem with or without assignment guar-

antees, most of the properties we look for and expect from our mechanism depend on the

preferences of the doctors (q-fairness of the mechanism, stability of the outcome, etc.) There-

fore, if the doctors have incentives to misreport their preferences, it would be pointless to

analyze those properties. Strategy-proofness is therefore an essential property of the mech-

anisms to eliminate such incentives of the doctors.
5When there is a single program, a mechanism being q-fair is equivalent to the choice function being

q-responsive as in Aygün and Turhan (2020).
6Recall Example 2, the outcome of AGAM would be µA(h) = {a, b}, leaving c unemployed, thus violating

fairness.
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Definition 5. A mechanism ϕ is strategy-proof (for doctors) if for any doctor d and

preference profile (Pd, P−d), where P−d is the collection of the preference profiles of all doctors

but d, there is no preference P ′

d ∈ Pd such that µφ(P ′

d
,P−d)(d) ≻d µφ(Pd,P−d)(d).

Proposition 3. AGAM is strategy-proof.

Strategy-proofness ensures that the doctors reveal their true preferences to the mecha-

nism, without which, all the other properties would trivially fail according to true preferences.

Moreover, note that the assignment guarantees of doctors are automatically revealed to the

mechanism. However, the guarantees can only improve the placement of a doctor and the

doctors do not differentiate between different types of seats. Therefore, even if we allowed

the doctors to report their assignment guarantees alongside their preferences, they would

not have an incentive to hide their guarantee status either.

The fact that AGAM is also strategy-proof strengthens our claim that the mechanism

is suitable to use in placement environments with assignment guarantees. Furthermore, the

following theorem concludes that AGAM is in fact the unique mechanism if the designer has

merit concerns, is constrained by the guarantees as well as aims to create as least additional

seats as possible while eliciting the true preferences of doctors.

Theorem 1. AGAM is the unique strategy-proof mechanism that respects assignment guar-

antees, is q-fair, and avoids unnecessary slots.

Proof. The mechanism is essentially a deferred acceptance algorithm that uses the AGA

choice function at each iterative step. In Appendix D, we show that the axioms of respecting

assignment guarantees, q-fairness, and AUS are together equivalent to stability with respect

to the AGA Choice Function. The AGA Choice Function satisfies substitutes and the law

of aggregate demand conditions, the deferred acceptance induced by this function produces

a stable outcome and is strategy-proof. By Hirata and Kasuya (2017), the doctor proposing

deferred acceptance algorithm is the unique candidate for a strategy-proof mechanism that

produces a stable outcome.

4.3 Deviation

Until this point, we characterized and showed many favorable properties of AGAM. In this

section, we analyze how the mechanism deviates from the target capacities, which are care-

fully designed by planners, and deviations from which are rather undesired.
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Admitting that the additional capacities will have to be created in a student placement

problem with assignment guarantees, we calculate the deviation of an outcome from the

original target capacity of a program by taking the difference between the realized capacity

and the target capacity only if the realized capacity exceeds the target capacity. Formally, the

deviation of an outcome from the original target capacity of a program is max{µ(h)− qh, 0}.

The main reasoning behind this absolute value approach is that it is the unintended and

inevitable “excess” placements that cause the complications in the first place. By now, it

is clear that the notion of avoiding unnecessary slots is required to control the complication

dimension. The theorem below shows that, indeed, AGAM is one of the mechanisms that

minimize the deviation from the target capacities whilst satisfying q-fairness and respecting

the assignment guarantees of doctors.

Theorem 2. Among the mechanisms that are q-fair and respect assignment guarantees of

doctors, AGAM minimizes the deviation from the target capacities.

Formally, for all mechanisms ϕ that are q-fair and respect assignment guarantees, and prob-

lems (D,H, PD, PH , qH , EH), we have ∀h ∈ H, max{µA(h)− qh, 0} ≤ max{µφ(h)− qh, 0}.

A very short and verbal intuition for the proof would be: In order to obtain an outcome

that deviates less than µA, a chain must be constructed over µA, which starts with a doctor

who is placed to that program under µA and ends at a vacant capacity. We show in the ap-

pendix rigorously that such a chain conflicts with either q-fairness or assignment guarantees

or both. In fact, the deviation result relies on the AUS property of AGAM, which is one way

to prevent excessive deviations. After proving this theorem, we can now conclude that: In

a student placement problem with assignment guarantees, if the deviation from the target

capacities is undesirable, AGAM is one of the best mechanisms which can be implemented.

The formal proof, as well as an illustrative example, is to be found in the appendix.7

5 Applications

In this section, we present three applications of the theoretical analysis in this paper. First,

we introduce the Re-placement of Residents Matching Problem in Turkey, where some can-

didates have guaranteed seats at a program. Second, we discuss implications for couple

matching where the authorities guarantee that spouses will be appointed to geographically

7Observe that there might be other mechanisms that result in the same deviation for each program. For
example, one other mechanism that minimizes deviation applying TTC after AGAM. This mechanism fails
AUS. An example of the outcome can be found here 3.
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similar locations. Third, we consider an application in the job market: Workers can claim

their previous positions after their parental leave.

5.1 Re-placement of Residents Matching Problem in Turkey

Medical students in Turkey, who want to continue their education with specialization take an

exam called the Examination of Specialty in Medicine (ESM). The state agency Measuring,

Selection, and Placement Center (MSPC) is responsible for conducting the ESM twice a year

as well as the assignment procedure in the aftermath of the exam. In the ESM, residential

candidates receive a score and they are ranked according to those scores. Thereafter, they

are placed at residency programs according to the doctor proposing deferred acceptance

algorithm (similar to many exams conducted by the MSPC). However, one of the two exams

in the years 2010, 2013, 2014, and 2016 were special and the placement process was not that

straightforward. After the exam, some questions were found flawed by authorities and were

officially canceled. Scores of the doctors were calculated according to the remaining accurate

questions. As usual, placements were done by the doctor proposing DA algorithm.

Nonetheless, after the placements, the State Council revoked the cancellation which

re-established the accuracy of the canceled questions. This led to a change in the scores and

hence the rankings of the doctors. However, the placements had already been done and the

residential candidates had started working at their assigned programs. Hence, the original

placement was obviously not fair to some residential candidates, especially to those, whose

rankings have increased after the score recalculation.

As a compensation, it was announced that there was going to be a re-placement pro-

cedure, which aimed to provide fairness to the doctors with increased rankings. The re-

placement procedure would preserve the acquired rights (which correspond to the assignment

guarantees in our setting) of the existing doctors in the programs, i.e. who were assigned a

seat during the original placement procedure 8. In other words, any compensation mecha-

nism should make the candidates who were placed in the initial placement at least as well

of.

All in all, restoring fairness and respecting the acquired rights cannot take place unless

the target capacities of the programs are relaxed. For some scores and preferences of doc-

tors, some residential programs end up with more doctors than their target capacity. The

8The acquired rights are defined by law and prevent the existing residents of programs being assigned to
other programs which they prefer less than their initial assignments (also called as vested interests in the
literature)
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unintended acceptance of these doctors results in inefficiency in many ways. First, from the

governmental point of view, if they were not placed at the original placements, they are harm-

ing the government’s budget. Second, from a program’s point of view, if the program was

optimally designed for one resident, then the additional resident may reduce the quality of

the education for each resident. Third, if a doctor has already started with another residency

program, her being accepted by another program means a loss for her original assignment.

Depending on the presence and quality of the other doctors in its application pool, that

program might face other complications and this situation will keep snowballing towards the

less preferred programs. Additionally, young residential candidates usually prefer programs

in urban areas rather than rural ones. Thus, this unintended creation of additional capacities

is likely to disturb the balance between rural and urban hospitals in terms of the number of

residents employed, who are an important chain ring in the middle of the health industry.

In another work in progress (Aygün and Bilgin (n.d.)), we analyze the mechanism used

by MSPC and compare it to AGAM rigorously. Under the dominant strategy of doctors, the

mechanism used by MSPC creates additional seats to doctors even without the top-q merit

or an assignment guarantee. As shown in previous chapters, in the Re-Placement of Medical

Residents Problem, AGAM is the only strategy-proof mechanism that respects the acquired

rights, is q-fair, and avoids unnecessary slot creation. In fact, for this case with exam scores,

the characterization is even stronger. The only stable matching in a re-placement of residents

matching problem can be found via AGAM. Therefore, in a student placement environment

with central exam scores and assignment guarantees, the designer can implement AGAM

to find a q-fair matching that respects acquired rights and avoid excess capacity deviations

simultaneously. Furthermore, among the q-fair mechanisms that respect the acquired rights,

AGAM minimizes the deviation from the target capacities.

5.2 Spousal Matching

Matching markets with couples is an interesting theoretical problem. The problem of match-

ing with couples relies on the fact that spouses have a preference to be appointed to geo-

graphically similar locations, and there is already a wide literature about whether and under

what conditions stability can be achieved (Roth (1984), Kojima, Pathak, and Roth (2013)).

In order to protect family integrity, different central planners adopt different solutions.

The famous National Resident Matching Program (NRMP) states that “When applicants

participate in a Match as a couple, their rank order lists form pairs of program choices that

are considered by the matching algorithm. A couple will match to the most preferred pair
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of programs on their rank order lists where each partner has been offered a position.9”. In

Turkey, civil servants are guaranteed to be appointed to the same location as their spouse,

provided that either their spouse is also a civil servant, or the spouse has been working for

the same private firm for a sufficiently long time.

For instance, after medical education, doctors have to complete a mandatory civil service

at a place that is determined by a lottery to validate their diplomas. Married doctors who

satisfy the above criteria can apply for a spouse-related appointment to be separated from

the general lottery and are guaranteed to be appointed to a hospital in the same city as their

spouse.10

In that case, the departments might have to create excess capacities even though they

are not looking for additional workers. The excess capacity creation is only due to the marital

status of doctors, which usually is exogenous to the appointment problem.

5.3 Return to Work After Parental Leave

Having and raising offspring is a basic instinct for human beings. Furthermore, for a func-

tioning social security system and a balanced society, every country needs a sufficient amount

of young population to join the labor force. Nevertheless, the fertile time window usually

conflicts with the early career plans of young individuals. Hence, it is not always an easy

decision to take a break from their career. Therefore, many countries work on regulations

that will give young individuals incentives to childbearing to have a balanced population.

In the European Union, the law ensures that “working men and women are entitled to

return to their jobs or to equivalent posts on terms and conditions which are no less favorable

to them.11” With that regulation, the potential fear of losing their job is eliminated, so young

individuals are incentivized towards childbearing.

However fair and reasonable that protection is, the firms might have nondeferrable needs.

Suppose the newly parent’s temporarily vacant position is crucial for the firm’s structure.

In that case, the firm might consider hiring an additional worker, even though it is aware

that the parent has the right, and will return to the same position after their parental leave.

In that case, the firm will have hired an additional worker even though it does not have a

prospect of expanding the company.

9Source: The official website of NRMP https://www.nrmp.org/
10Source: The official website of Ministry of Health in Turkeyhttps://yhgm.saglik.gov.tr/
11Source: Directive 2006/54/EC of the European Parliament and of the Council of 5 July 2006 on the

implementation of the principle of equal opportunities and equal treatment of men and women in matters
of employment and occupation https://commission.europa.eu
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6 Conclusion

In this paper, we analyze student placement problems with assignment guarantees, where

the designer aims to preserve assignment guarantees as well as has some fairness concerns.

We show that conflict between fairness and assignment guarantees is unavoidable when the

capacities of programs are fixed.

Nevertheless, since the capacities of the programs are already optimized, any devia-

tion from the target capacities is costly and undesirable. Imposing the traditional notion

of fairness, however, results in excessive deviations from the target capacities in such an

environment. Thus, the traditional fairness notion is not suitable for student placement

environments with assignment guarantees. In order to reduce excessive deviations and still

redeem some form of fairness, we define the notions of capacity respecting fairness and

avoiding unnecessary slots. Capacity respecting fairness relaxes fairness to the extent that a

mechanism can be unfair to candidates that are ranked outside the target capacity but can

still be q-fair. Avoiding unnecessary slots ensures that additional seats are used either by

merit candidates or guaranteed candidates.

Moreover, we define a new selection rule for the programs: Assignment-Guarantees-

Adjusted Choice Function and propose a new mechanism, Assignment-Guarantees-Adjusted

Mechanism to be used in student placement procedures with assignment guarantees.

The Assignment-Guarantees-Adjusted Mechanism is the deferred acceptance algorithm

induced by the Assignment-Guarantees-Adjusted Choice Function. It is the only strategy-

proof mechanism that satisfies the q-fairness, and avoids unnecessary slots while respecting

assignment guarantees. Moreover, the Assignment-Guarantees-Adjusted Mechanism mini-

mizes the deviation from the target capacities, whilst respecting the assignment guarantees

of doctors and satisfying q-fairness.

For future research, it might be useful to consider programs’ preferences more elabo-

rately. For instance, the central planner might commit to smaller target capacities if there are

many candidates with assignment guarantees and the deviation is costly. On the other hand,

if the emphasis is rather on fairness, we would observe larger target capacities. Quantifying

the analysis might help us better understand environments with assignment guarantees.
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Appendix

A Non-wastefulness

Definition 6. Mechanism ϕ is non-wasteful if for any fixed problem (D,H, PD, qH , EH , sD),

∀(d, h) ∈ (D ×H), h ≻d µ
φ(d) =⇒ |µφ(h)| ≥ qh.

We can easily show that if a mechanism satisfies q-fairness, it is also non-wasteful.

Suppose ϕ violates non-wastefulness. Then ∃(d, h) such that h ≻d µφ(d) and |µφ(h)| < qh.

Then, z(d|Ph, µ
φ(h) ∪ {d}) ≤ qh which means ϕ also violates q-fairness.

B Properties of the AGA Choice Function (CA
h )

1. Substitutes

Definition 7. Elements of Y are substitutes for program h if for all subsets Y ′ ⊂

Y ′′ ⊂ D we have Y ′ \ Ch(Y
′) ⊂ Y ′′ \ Ch(Y

′′). (Hatfield & Milgrom, 2005)

Substitutes condition requires that the rejection set expands (weakly) as the applica-

tion pool expands. Intuitively, it implies that there are no complementarities between

doctors.

Lemma 1. CA
h satisfies substitutes.

Proof. Any violation of substitutes would require the existence of doctor d such that,

d /∈ CA
h (Y

′) but d ∈ CA
h (Y

′′) for some Y ′′ such that Y ′ ⊂ Y ′′. All by-h-prioritized

doctors are chosen by the choice function, so our violation of substitutes, if any, must

stem from the non-prioritized candidates in the application pool. Suppose d it not

prioritized at h and d /∈ CA
h (Y

′). Then d has not a high enough ranking in Y ′. Clearly,

doctor d’s ranking in the set Y ′ weakly decreases while the set expands by the addition

new doctors. As a consequence, d will still not be chosen from any set Y ′′ such that

Y ′ ⊂ Y ′′ either. Thus, CA
h satisfies substitutes.

2. Law of Aggregate Demand

Definition 8. The preferences of hospital h ⊂ H satisfy the law of aggregate demand

if for all X ′ ⊂ X ′′ ⊂ D, Ch(X
′) ≤ Ch(X

′′). (Hatfield & Milgrom, 2005)

The Law of Aggregate Demand is an intuitive condition, which implies that the chosen

set does not get smaller as the application pool expands.
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Lemma 2. CA
h satisfies LAD.

Proof. Observe that for any Y ′ ⊂ Y ′′ ⊂ D, if |CA
h (Y

′)| ≤ qh, at least |C
A
h (Y

′)| candi-

dates will be chosen from Y ′′. If |CA
h (Y

′)| > qh, it means there are prioritized candidates

in (Y ′), who are ranked outside the target capacity. As the set expands, those priori-

tized doctors will still be outside the capacity, thus again at least |CA
h (Y

′)| candidates

will be chosen from Y ′′ as well. Thus, for all Y ′ ⊂ Y ′′ ⊂ D, |CA
h (Y

′)| ≤ |CA
h (Y

′′)|.

3. IRC

Definition 9. Given a set of doctors D, a choice function satisfies the irrelevance

of rejected contracts (IRC) if and only if:

∀Y ⊂ D, ∀z ∈ D \ Y z /∈ C(Y ∪ {z}) =⇒ C(Y ) = C(Y ∪ {z}). (Aygün &

Sönmez, 2013)

The IRC condition requires that the removal of not chosen (rejected) contracts from

the application pool do not affect the chosen set.

Lemma 3. CA
h satisfies IRC.

Proof. Suppose the choice function chooses CA
h (Y ) from the application pool Y , where

d /∈ CA
h (Y ). As above, d ∈ (Y \ Eh) and d’s ranking in Y is lower than the target

capacity. Then, removing d from Y would have no effect on the top qh candidates

of the prioritized candidates, and thus on the chosen set, namely ∀d ∈ Y such that

d /∈ CA
h (Y ), CA

h (Y ) = CA
h (Y \ {d}). Thus, CA

h satisfies IRC.

C Properties of AGAM

Proposition 2:

Proof. Below we show that AGAM is q-fair, AUS, and respects assignment guarantees.

1. q-fairness:

AGAM is the mechanism that uses the AGA Choice Function for programs at each

iterative step of the deferred acceptance algorithm. Therefore, if ∃(d, h) such that

h ≻d µ
A(d), d must have proposed to h at earlier steps before the algorithm concluded,

and h can only reject d for the doctors it prefers over d to fill its seats, which implies

z(Ph, µ
A(h) ∪ {d}) > qh.
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2. AUS:

The AUS property of AGAM straightforwardly follows from the AGA Choice Function

and the deferred acceptance procedure. At each step of the DA, the choice function

selects applicants such that they are either in the top-q for the program, or they have a

guaranteed seat. The top-q candidates admitted in the first step can only be replaced

with better-ranked candidates in the following rounds, whereas the guarantees candi-

dates never lose their additional seats. Therefore, the end allocation ensures the same

for the selected doctors for all programs.

3. Assignment Guarantees:

Similar to AUS, respecting assignment guarantees follows from the fact that the AGA

Choice Function respects guarantees at each step. A candidate who has a guaranteed

seat at h proposes to h only when she is rejected from all other programs that she prefers

to h and she once she proposes to h she receives either a top-q seat or an additional seat

created because of her guarantee. The status of the seat can only change from top-q to

an additional seat but she is never rejected by h.

Proposition 3:

Proof. AGAM is strategy-proof because the choice function that induces the DA in this

mechanism satisfies the substitutes and the Law of Aggregate Demand (LAD) conditions,

which are sufficient properties for a deferred acceptance algorithm to be strategy-proof (Hat-

field and Milgrom (2005)).

D Stability

The minimal requirement one would expect from a mechanism is that it produces a stable

matching, which is the most common equilibrium concept in matching theory. Among sev-

eral different approaches to stability in the literature, we use pairwise stability, intuitively

meaning that no parties can individually or mutually be better off by opting out of the

mechanism.

Formally, a matching µ is stable if it is:

1. individually rational, Ci(µ(i)) = µ(i) for all i ∈ (D ∪H).
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2. not blocked, ∄(d, h) pair such that µ(d) ̸= h, Cd(µ(d) ∪ h) = h and d ∈ Ch(µ(h) ∪ d).

Below, we show that AGAM always creates a stable outcome with respect to the AGA

Choice Function. In fact, we prove this not only by relying on the properties of the choice

function but also by rigorously showing that the outcome is always individually rational and

there are no blocking pairs. Furthermore, we show the properties of q-fairness, AUS, and

respecting guarantees together are equivalent to the stability with respect to the AGA choice

function in our framework, which is yet another way of proving the stability of the outcome

of AGAM.

Proposition 4. AGAM produces a stable outcome with respect to the AGA Choice Function.

Proof. As mentioned above, one proof would be relying on the properties of the choice

function. Since CA
h satisfies substitutes, LAD, and IRC conditions, the existence of a stable

outcome is guaranteed. Furthermore, the deferred acceptance algorithm induced by this

choice function creates a stable outcome.

Alternatively, we show that the mechanism is individually rational and there are no

blocking pairs.

1. Individual Rationality: Along the DA, doctors only propose to acceptable programs

and programs only accept doctors that either belong to top q or have an assignment

guarantee, which corresponds to AUS for programs.

2. Blocking pairs: Suppose (d, h) constitute a blocking pair under µA. The nature of DA

requires d having proposed to h. Since they are not matched under µA, h rejects d after

the proposal because h has employed at least qh candidates that are preferred over d

and d has no guarantee at h.

Theorem 3. Any mechanism satisfies q-fairness, avoids unnecessary slots, respects assign-

ment guarantees, and is individually rational for doctors if and only if it is stable with respect

to the AGA Choice Function.

Proof. ⇒ Suppose a mechanism ϕ is individually rational for the doctors, satisfies q-fairness,

avoids unnecessary slots, respects assignment guarantees, and however, is not stable. Since

we already assumed it is individually rational for the doctors, it can only fail IR for the

programs. A doctor d is not acceptable for program h under µφ if d ∈ µφ(h) but d /∈

Ch(µ
φ(h)). Doctor d not being chosen implies d not being one of the top qh candidates in
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µφ(h) and d /∈ Eh, which conflicts with ϕ avoiding unnecessary slots. Therefore, ϕ has to be

individually rational.

The only possibility of ϕ not being stable is then blocking pairs. Suppose (d, h) such

that d ∈ Ch(µ
φ(h) ∪ {d}) and h = Cd(µ

φ(d) ∪ h). Since ϕ respects assignment guarantees,

d /∈ Eh. Then d ∈ Ch(µ
φ(h) ∪ {d}) implies z(d|Ph, µ

φ(h)) ≤ qh, which conflicts with ϕ

satisfying q-fairness.

⇐ Suppose a mechanism ϕ is stable with respect to the AGA Choice Function. It is

individually rational for the doctors since it is stable. Suppose it does not respect assignment

guarantees. This means ∃(d, h) such that µφ(d) = h′, h ≻d h′, and d ∈ Eh. In that case,

(d, h) would constitute a blocking pair with respect to the AGA Choice Function (because

Cd(µ
φ(d) cup{h}) = h and Ch(µ

φ(h) ∪ {d}) is either µφ(h) ∪ {d} or µφ(h) \ {d′} ∪ {d} for

some d′). With the same logic, ϕ has to satisfy q-fairness (or the candidate who is ranked

within capacity would form a blocking pair with the respective program). Lastly, suppose

ϕ does not avoid unnecessary slots, i.e. ∃(d, h) such that µφ(d) = h but z(d|ph, µ
φ(h)) > qh

and d /∈ Eh, which means d received a seat at h despite her ranking and having no guarantee.

The AGA Choice Function would then reject at least d, d ∈ µφ(h) \Ch(µ
φ(h)), which would

imply ϕ not being individually rational for the programs.

E Deviation

Theorem 2:

Proof. The theorem is equivalent to the following: ∄ a mechanism ϕ which satisfies q-fairness

and respects guarantees, along with a problem (D,H, PD, PH , qH , EH) such that ∃h for which

max{µφ(h)− q′h, 0} < max{µA(h)− q′h, 0}.

Suppose there exists such ϕ, which satisfies q-fairness, respects guarantees, and creates

less deviation at program h from the target capacities than AGAM for a fixed problem

(D,H, PD, PH , qH , EH). The existence of a mechanism ϕ with less deviation implies that

there is excess employment under AGAM. The only way there is excess employment under

AGAM is that for some h the least preferred doctor d ∈ µA(h) is a doctor with a guarantee

(because of AUS). Since ϕ results in less deviation, the excess capacity creation at h must

be strictly reduced.

Step 0: Furthermore, we also know that if ϕ creates less deviation, it must place some

doctor, who was placed elsewhere under µA to a vacant capacity. This can happen via cycles
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and chains, but there has to be at least 1 chain. Note that this vacant capacity can either

be at another hospital, or it can be the unemployment scenario. Call this doctor, who is

placed in a vacant capacity under ϕ as dn. Recall that AGAM is individually rational and

non-wasteful. Hence, we know that dn prefers hn = µA(dn) to this vacant capacity. Because

ϕ respects guarantees, it also follows that dn /∈ Ehn
. Hence, dn ̸= d.

Step 1: Since ϕ also satisfies q-fairness, there must be at least qhn
doctors under µφ at

hn that hn prefers to dn. In words, this means all the seats in the target capacity of the

program must have been filled with better candidates so that dn can not reclaim her seat

at hn. This also means that there is at least one doctor who is preferred to dn, who was

matched to somewhere else under AGAM, but is assigned to hn under ϕ. Call the

by-hn-least-preferred doctor among those as dn−1. Let dn hypothetically point to dn−1 and

let hn−1 = µA(dn−1). If dn−1 prefers hn over hn−1, AGAM would fail q-fairness, which by

definition is impossible. Hence dn−1 must prefer hn−1 over hn. Because ϕ respects guarantees,

it follows that dn−1 /∈ Ehn−1 .

...

Step k: Since ϕ also satisfies q-fairness, there must be at least qhn−(k−1)
doctors under

µφ at hn−(k−1) that hn−(k−1) prefers to dn−(k−1). This also means that there is at least

one doctor who is preferred to dn−(k−1), who was matched to somewhere else under

AGAM, but is assigned to hn−(k−1) under ϕ and who has not been pointed until this

step. Call the least preferred doctor among those as dn−(k−1)−1. Let dn−(k−1) hypothetically

point to dn−(k−1)−1 and let hn−(k−1)−1 = µA(dn−(k−1)−1). If dn−(k−1)−1 prefers hn−(k−1) to

hn−(k−1)−1, AGAM would fail q-fairness, which by definition is impossible. Hence dn−(k−1)−1

must prefer hn−(k−1)−1 to hn−(k−1). Because ϕ preserves assignment guarantees, it follows

that dn−(k−1)−1 /∈ Ehn−(k−1)−1
.

Observe that this induction can be traced back with finitely many steps until all the

relocated candidates are pointed. Furthermore, since ϕ strictly reduces the deviation at h,

the chain’s last step is a doctor that was employed at h under AGAM. Then, there are two

cases to consider:

1. If we encounter d in one of the steps:

Recall that d was the least preferred doctor along the doctors in µA(h). We cleared

before that d ∈ Eh. By construction of the pointing, µφ(d) = h′ ̸= h. Now, if d prefers

h over h′, ϕ does not respect her guarantee at h. If d prefers h′ over h then AGAM fails

q-fairness, contradiction.

2. If we don’t encounter d in one of the steps:
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This means that d ∈ µφ(h) as well. To reduce the deviation, some other doctor d′ ∈

µA(h), such that d′ ≻h d must have been relocated to some other program, hence

constitutes one end of the chain, d′ = d1. For notational convenience, rename µA(di) =

hi and µφ(di) = hi+1 for all i = 1, ..., n. The chain takes d1 from h1 to h2, takes d2 from

h2 to h3,...., until the under AGAM vacant capacity under hn+1 is reached. From the

construction of the chain, no candidate has a guarantee at their assignment under µA.

Since AGAM is AUS and d1 has no priority at h1, d1 is ranked within top qh1 for h1.

Therefore, it must be that h2 ≻d1 h1 so that d1 and h1 do not block muφ (q-fairness).

If d1 ≻h1 d2 contradicts with q-fairness of AGAM, so d2 ≻h1 d1. Again, h3 ≻d2 h2 for q-

fairness of ϕ. Following these steps, we have hi+1 ≻di hi and di+1 ≻hi+1
di. However, for

hn, dn ≻hn
dn−1 contradicts with ϕ’s q-fairness (dn is at a vacant seat) and dn−1 ≻hn

dn

contradicts with AGAM’s q-fairness (dn−1 and hn would block muA).

Another possibility is that the chain does not include the least preferred doctor in µA(h) but

another one among the least preferred doctors who are ranked outside the target capacity.

Such a doctor has also a guaranteed seat at h and the proof goes through.

Let us illustrate the arguments of the proof with the example below. Similar to the proof,

we try to construct an alternative outcome with less deviation from the target capacities.

In order to consider less deviation from the target capacities, the outcome of AGAM

must have placed excessive residents in at least one program. There must be an existing

candidate of this program, who wanted to use her guarantee to be placed in the same

program. In the example, let the set of programs and doctors be H = {h1, h2, h3} and

D = {d1, d2, d3} respectively, with each program having a target capacity of 1. Suppose the

outcome of AGAM is such that µA(h1) = {d3, d1}, µ
A(h2) = {d2} and µA(h3) = ∅. h3 = ∅ is

analogous to some vacant seat at a program or the unemployment case. Let us without loss

of generality assume d3 ≻h1 d1 and impose no further score relations on the candidates. For

the other case, the flow will be analogous.

From the structure above, we already have some information:

• h1 likes d3 more than d1 and d1 creates excess capacity at h1 =⇒ d1 ∈ Eh1 .

• µA(h3) = ∅ =⇒ each candidate prefers own allocation under µA to h3.

• d1 used her guarantee to be placed at h1 =⇒

she either prefers h1 to h2 or she prefers h2 to h1 but h2 prefers d2 over d1.

Now consider the following alternative allocations µφ which deviate less than µA. In any

alternative, we start the chain from the residential candidate placed at the vacant seat at h3.
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This doctor will (hypothetically) point to the lowest-scored doctor who claimed her seat at

her previous assignment by outscoring her. If the chain includes d1, ϕ violates guarantees or

AGAM violates q-fairness. If the chain does not include d1, ϕ violates q-fairness. In either

case, we find a contradiction that ϕ creates less deviation while respecting guarantees and

satisfying q-fairness.

• µ(h1) = d1, µ(h2) = d2, µ(h3) = d3

d3 cannot point to anyone, the chain ends without starting

Since d3 ≻h1 d1, ϕ fails q-fairness.

• µ(h1) = d1, µ(h2) = d3, µ(h3) = d2

d2 points to d3, d3 cannot point to anyone, the chain ends. h2 ≻d3 h1 (or AGAM is not

q-fair). If d3 ≻h2 d2, AGAM fails q-fairness. If d2 ≻h2 d3, ϕ fails q-fairness.

• µ(h1) = d2, µ(h2) = d1, µ(h3) = d3

d3 points to d2, d2 points to d1.

We encounter d1, a guaranteed candidate. d2 ≻h1 d3 (or ϕ is not q-fair), h2 ≻d2 h1 (or

AGAM is not q-fair), d1 ≻h2 d2 (or ϕ is not q-fair). If h2 ≻d1 h1 AGAM is not q-fair, if

h1 ≻d1 h2 ϕ fails guarantees.

• µ(h1) = d2, µ(h2) = d3, µ(h3) = d1

d1’s guarantee at h1 is not respected.

• µ(h1) = d3, µ(h2) = d1, µ(h3) = d2

d2 points to d1, the chain ends. d1 ≻h2 d2 (or ϕ is not q-fair). If h2 ≻d1 h1 AGAM is

not q-fair, if h1 ≻d1 h2 ϕ fails guarantees.

• µ(h1) = d3, µ(h2) = d2, µ(h3) = d1

d1’s guarantee h1 is not respected.

Observe that leaving µ(h3) = ∅ as it was in the µA and sending the candidates to unem-

ployment will not be possible due to similar arguments as above. So, we can conclude that

it is not possible to create an allocation with less deviation than AGAM outcome, whilst

preserving assignment guarantees and satisfying q-fairness.
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